Smallsat technology trends and their impact on the future of solar system exploration Tony Freeman, JPL Sept 2017 Jet Propulsion Laboratory, California Institute of Technology 3rd COSPAR Symposium 2017, Jeju, S. Korea # Cubesats were 'toys' 18 years ago... # Science Instrument Examples (1U = 1 liter) HARP Imaging Polarimeter(3U) Mass Spectrometer (3U) JPL (TBD) RainCube radar (6U) JPL (2017) LunariceCube (6U) IR spectrometer GSFC (2018) Lunar Flashlight (6U) NIR laser MSFC/JPL (2017) VSWIR-Dyson (2U) spectrometer JPL (TBD) ### **Cubesat-sized Instruments – 2012 and 2017** | Technology | Selva* and
Krejci, 2012 | Freeman
2017 | Justification | |---|----------------------------|-----------------|------------------------| | Atmospheric Chemistry Instruments | Problematic | Feasible | PICASSO, IR sounders | | Atmos Temp and Humidity Sounders | Feasible | Feasible | | | Cloud Profile and rain radars | Infeasible | Feasible | JPL RainCube Demo | | Earth Radiation Budget radiometers | Feasible | Feasible | SERB, RAVAN | | Gravity Instruments | Feasible | Feasible | Need a demo mission | | Hi-res Optical Imagers | Infeasible | Feasible | Planetlabs | | Imaging microwave radars | Infeasible | Feasible | Ka-Band 12U design | | Imaging multi-spectral radiometers (Vis/IR) | Problematic | Feasible | AstroDigital | | Imaging multi-spectral radiometers (μWave) | Problematic | Feasible | TEMPEST, | | Lidars | Infeasible | Feasible | DIAL laser occultation | | Lightning Imagers | Feasible | Feasible | | | Magnetic Fields | Feasible | Feasible | InSPIRE | | Multiple direction/polarization radiometers | Problematic | Feasible | HARP Polarimeter | | Ocean color instruments | Feasible | Feasible | SeaHawk | | Precision orbit | Feasible | Feasible | CanX-4 and -5 | | Radar altimeters | Infeasible | Feasible | Bistatic LEO-GEO | | Scatterometers *Selva and Krejci, A survey and assessment of the capabiliti | Infeasible | Feasible | GPS refl. (CyGNSS) | ^{*}Selva and Krejci, A survey and assessment of the capabilities of Cubesats for Earth observation, Acta Astronautica, 74, 50–68 (2012) Slide courtesy J. Castillo-Rogez, JPL © 2017 California Institute of Technology. U.S. Government sponsorship acknowledged. ### **RF** # Telecom # **Optical** ### ISARA Reflectarray/Solar Array JPL (2017) Optically Transparent/ RF Reflective Coatings Utah State (TBD) - RF Reflectarrays can scale to larger antennas - Active and passive Optical Comm - Optically transparent/RF reflective coatings printed on large solar arrays on deep space missions **Dual-use Solar arrays** Aerospace (2016/7) (TBD) **Bridgesat Optical Comm Terminal** Bridgesat (TBD) © 2017 California Institute of Technology. U.S. Government sponsorship acknowledged. # **Power Systems** - Solar Array Plateau ~ 45% efficiency? - Batteries that work over wide temperature ranges? - Electromagnetic tethers great if there's a ma - Progress in nuclear dependent on NASA/ Compact RTGs? Electromagnetic Tethers Tethers Unlimited (TBD) Pre-Decisional Information — For Planning and Discussion Purposes Only **Spacecraft S/W Functions** # **Propulsion** Solar Sail (first design in 1976) Planetary Society (2015) Deployable Aeroshell **NASA Ames (2017)** MicroSpray Electric propulsion Busek (2019) **NASA EM Drive** NASA JSC (???) eSail demo Aaalto U. Finland (2017) # **Attitude Determination and Control** - Fraction of an arcsec pointing - Navigation using Pulsars - Precision Formation Flying Asteria Exoplanet Hunter JPL/MIT (2018) CanX-4 and -5 Precision Formation Flying **UTIAS SFL (2014)** XPNav-1 Deep Space navigation using X-ray Pulsars © 2017 California Institute of Technology. U.S. China (2016) Government sponsorship acknowledged. # **Cubesat Assembly** (in less than one workday) Video clip courtesy Tyvak Corporation # **Advanced Manufacturing** - 3-D printed valves on Falcon-9 - 3-D printing of S/C components - Multi-function Structures - Robot-assisted Integration and Test - S/C build cycles < 1 week Robot-assisted assembly [15 Smallsat S/C per week] OneWeb (2018) Planetary Resources (2014) 3-D Printed Rocket Engine Space-X (2014) # **Additive Manufacturing** - 3-D printer as a flight payload - Print Hardware Upgrades - Use In situ resources - Large-scale Structures in Space Making a Spacecraft out of an Asteroid Made In Space (TBD) First 3-D Printer in Space Made In Space on ISS (2014) Object printed from asteroid metals Planetary Resources (2016) © 2017 California Institute of Technology. U.S. Government sponsorship acknowledged. ## **Mars Cube One** - Two redundant 6U CubeSat spacecraft - Launch: Mar. 2016; Arrival: Sep. 2016 - Real-time relay of InSight EDL data - UHF link: InSight lander to MarCO - X-band link: MarCO to Earth A Technology Demonstration of communications relay system for Mars missions' critical events such as the 2016 InSight entry, descent, & landing. Interplanetary Travel Flyby Mars # **NEAScout** # Near Earth Asteroid ScoutSat (NEAScout) # EXPLORATION MISSION-1: LAUNCHING SCIENCE & TECHNOLOGY SECONDARY PAYLOADS SUPPORTS BOTH PRIMARY MISSION AND SECONDARY PAYLOADS ### PRIMARY MISSION TESTING SLS ### SPACE LAUNCH SYSTEM (SLS) LIFTS MORE THAN ANY EXISTING EXISTING LAUNCH VEHICLE # ORION SPACECRAFT TRAVELING THOUSANDS OF MILES BEYOND THE MOON, WHERE NO CREW VEHICLE HAS GONE BEFORE # CU EXP GOING TO WHERE F # SECONDARY PAYLOADS THE RING THAT WILL CONNECT THE ORION SPACECRAFT TO NASA'S SLS ALSO HAS ROOM FOR 13 HITCHHIKER PAYLOADS ### **AVIONICS** (SELF-CONTAINED AND INDEPENDENT FROM THE PRIMARY MISSION) SEND CUBESATS ON THEIR WAY # 13 CUBESAT EXPLORERS GOING TO DEEP SPACE WHERE FEW CUBESATS HAVE EVER GONE BEFORE. ### SHOEBOX SIZE PAYLOADS EXPAND OUR KNOWLEDGE FOR THE JOURNEY TO MARS #RIDEONSLS # EM-1 (2018): THE FIRST SCIENCE **SWARM OF CUBESATS** [Ride-alongs] SUPPORTS BOTH PRIMARY MISSION AND SECONDARY PAYLOADS ### ORION . **SPACECRAFT** TRAVELING THOUSANDS OF MILES BEYOND THE MOON. WHERE NO CREW VEHICLE HAS GONE BEFORE GOING TO DEEP SPACE WHERE FEW CUBESATS HAVE EVER GONE BEFORE. ### **SECONDARY PAYLOADS** THE RING THAT WILL CONNECT THE ORION SPACECRAFT TO NASA'S SLS ALSO HAS ROOM FOR 13 HITCHHIKER **PAYLOADS** ### SHOEBOX SIZE PAYLOADS EXPAND OUR KNOWLEDGE FOR THE JOURNEY TO MARS #RIDEONSLS ### AVIONICS (SELF-CONTAINED AND INDEPENDENT FROM THE PRIMARY MISSION) SEND CUBESATS ON THEIR WAY ### MISSION TESTING SLS AND ORION SPACE LAUNCH SYSTEM SLS JIFTS MORE THAN ANY EXISTING LAUNCH VEHICL PRIMARY # Cupid's Arrow (Venus) Mission Concept Atmospheric Entry Conditions Pre-Decisional Information -- For Planning and Discussion Purposes Only © 2017 California Institute of Technology. U.S. Government sponsorship acknowledged. # ASTERIA: Arcsecond Space Telescope Enabling Research in Astrophysics - PI: Sara Seager, MIT - Single star at-a-time planetary transits - 0.1 arcsec precision pointing # **Sun Radio Imaging Space Experiment** SMEX Heliophysics Step II selection - Mission Concept # **CubeSats at Saturn?** - Power - 1.2-2W solar power @ Saturn - ~ 11 days to fully charge 200 Whr capacity with 1.2 W array - Up to 1200 Whr with primary batteries - Control - <0.003° pointing; >35°/sec slew rates - Communications (relay to primary) - X band with 5 W RF power - Antennas > 28 dBi gain X band - Propulsion (chemical) - ~250 m/s ΔV for a 12 kg 6U - Thermal - Some concepts would benefit from a compact RHU to survive thermal extremes Lunar IceCube: 120 W @ MarCo 28 dBi Deep Space Cubesat # **Titan Arrow Concept** ### **Mission Overview** - Primary S/C orbiting Saturn with flybys of Titan - Probe released from Primary onto spin stabilized "dive" trajectory - Primary deflects from entry trajectory post separation - Probe skims through the atmosphere down to homopause (~500 km) - Collects in situ samples for mass spec analysis - Probe performs aerocapture maneuver - Probe exits atmosphere, drops backshell and transmits data to Primary to be sent to Earth - Probe disposed to acceptable location on Titan on next periapse pass ### **Science Overview** - Huygens Probe didn't sample upper atmosphere - Upper atmosphere data desired for complete model ### Titan Arrow Objectives: Determine Upper atmosphere constituents (Ne, Ar, Kr, Xe) Constituents determined with Quadrupole Ion Trap Mass Spectrometer (QITMS) ### **Spacecraft Concept** Galileo based 45° sphere cone, ~0.55 m © 2017 California Institute of Technology. Government sponsorship acknowledged. # **Saturn Ring Diver Concept** ### **Mission Architecture** - 6U CubeSat rides along with primary mission to Saturn - Released at apoapse after Primary does Saturn orbit insertion - CubeSat performs inclination change maneuver ~45° - CubeSat dives through narrow gap in rings while taking pictures - If it survives, it transmits images to Primary via high gain antenna - CubeSat continues in ring diving orbit if it survives, is destroyed by rings if it doesn't ### **Science Overview** **Ring Science Gaps** Mass, Age, Structure Ring Diver investigates the ring structure by: - Determine density of Saturn's ring (TBD) - Size and distribution of ring particles - Particle Morphology Objectives achieved with <10 cm per pixel resolution camera Slide courtesy Andrew Bocher, Cal Poly SLO © 2017 California Institute of Technology. Government sponsorship acknowledged. Predecisional information for planning and discussion only. # **Investigating Titan's Magnetosphere** ### **Mission Overview** - Primary Spacecraft inserts into Titan orbit - 6U CubeSat released into same orbit - ~5.8 hour orbit - Deploys magnetometer on 0.6m boom - 5 orbits of 1 and 0.03 Hz measurements for the magnetometer and plasma instrument respectively - 90 orbits recharging batteries and relaying to Primary via S/C low gain antennas - Primary relays data back to Earth - Disposal into Titan ### **Science Overview** - Measure interaction of solar wind and Titan's magnetosphere - Map Titan's magnetosphere Objectives achieved with a Vector Helium magnetometer and Faraday Cup plasma instrument ### **Spacecraft Concept** 6 panel solar array (1.2 W) Aerojet Rocketdyne MPS12 ~250 m/s with AF-M315 BCT XACT 50 (0.003°) JPL PlasMag (boom ~ 0.6m) Single RHU (~1 W heat) Secondary Batteries (~400 Whr) GomSpace P60 EPS JPL Sphinx computer IRIS 2.1 radio ~100 kbps @3000 km Slide courtesy Andrew Bocher, Cal Poly SLO © 2017 California Institute of Technology. Government sponsorship acknowledged. Predecisional information for planning and discussion only. # **Concepts for Surface Mobility Systems** Under the Ice - Subsurface probes - Drones on Titan or Mars Through the Ice Pre-Decisional Information — For Planning and Discussion Purposes Only # **Humanoid Robots** Kirobo on ISS "That's one small step for me" # **Humanoid Robots** Artificial Intelligence? Tool use - DARPA **Augmented Reality** **Motion Capture** # **Going Interstellar** **Breakthrough Starshot** Kicksat Sprite picosat (1-2 g) breakthroughinitiatives.org/Initiative/3 # Summary - The building blocks are lining up for some really exciting "Discovery-class" Smallsat missions in the very near future - Miniaturization of instruments in particular has seen significant progress - Smallsats allow fast-track infusion of technology for <u>all</u> future deep space missions - Don't have to wait 40 years like we did for solar sails - On Earth, some technologies smaller instruments, AI, robotics, adv. manufacturing – are taking off exponentially - When these exponential technologies converge and are space-adapted they will open up mind-blowing possibilities! © 2017 California Institute of Technology. Government sponsorship acknowledged.